具身交互推理: 图像-思考-行动交织思维链让机器人会思考、会交互
具身交互推理: 图像-思考-行动交织思维链让机器人会思考、会交互OpenAI 的 o1 系列模型、Deepseek-R1 带起了推理模型的研究热潮,但这些推理模型大多关注数学、代码等专业领域。
OpenAI 的 o1 系列模型、Deepseek-R1 带起了推理模型的研究热潮,但这些推理模型大多关注数学、代码等专业领域。
看似良心,实则一般。
OpenAI推出图像生成API,低至0.02美元/张,支持多模态定制。
上个月,OpenAI 在 ChatGPT 中引入了图像生成功能,广受欢迎:仅在第一周,全球就有超过 1.3 亿用户创建了超过 7 亿张图片。就在刚刚,OpenAI 又宣布了一个好消息:他们正式在 API 中推出驱动 ChatGPT 多模态体验的原生模型 ——gpt-image-1,让开发者和企业能够轻松将高质量、专业级的图像生成功能直接集成到自己的工具和平台中。
OpenAI 的 o1 系列和 DeepSeek-R1 的成功充分证明,大规模强化学习已成为一种极为有效的方法,能够激发大型语言模型(LLM) 的复杂推理行为并显著提升其能力。
当前,AI 领域呈现出一种近乎“追星式”的热情氛围,每当有新的东西发布,便迅速引发广泛关注与高度评价,仿佛技术变革即将一触即发。同时大家情绪也波动剧烈,从“危机论”到“爆发论”频繁切换。OpenAI 最近出的《A Practical guide to building AI agents》的指南,就是他们最近捧上天的“神作”。它直接被捧成了“圣经”,一时间风头无两。
现在,AI 产品仅仅只靠机器人尬聊,已经留不住用户了,这是显而易见的新共识。
OpenAI 最近发布了三份针对企业客户的研究报告,本次挑选了其中的「A Practical guide to building AI agents」一篇进行了翻译。除非已经是 Agent 资深开发大佬,否则强烈建议 AI 行业的大家都来读一下这篇报告。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
就在昨天,深耕语音、认知智能几十年的科大讯飞,发布了全新升级的讯飞星火推理模型 X1。不仅效果上比肩 DeepSeek-R1,而且我注意到一条官方发布的信息——基于全国产算力训练,在模型参数量比业界同类模型小一个数量级的情况下,整体效果能对标 OpenAI o1 和 DeepSeek R1。